Inter (Part-I) 2021 | Chemistry | Group-II | PAPER: I | | | |--|--|---------------------------------------|--|--| | Time: 20 Minutes | (OBJECTIVE TYPE) | Marks: 17 | | | | are given. The circle in front of the answer-book result in zero management of the following the series of ser | answers A, B, C and D to choice which you think is of that question with Mark ok. Cutting or filling two or nark in that question. | er or Pen ink in
more circles will | | | | (a) CaF ₂ | (b) Glass ✓ | | | | | (c) NaCl 2- The number of | (d) All of thes | | | | | the number of bonds in mitogen molecule is: | | | | | | and the second s | | | | | | (c) Three sign 3- The temperat | The state of s | | | | | (a) 20000°C √
(c) 5000°C | ure of a natural plasma is
(b) 1000°C
(d) 10000°C | about: | | | | 4- 18 g glucose | | ater the relative | | | | 4- 18 g glucose is dissolved in 90 g of water, the relative lowering of vapour pressure is: | | | | | | (a) $\frac{1}{5}$ (c) $\frac{1}{51}$ | Bab (b) 5.1 (d) 6 | | | | | * | 1-calorie is equivalent to: | | | | | (a) 0.4184 J
(c) 418.4 J | (b) 41.84 J
(d) 4.184 J | | | | | 6- Nickel has nu | Nickel has number of isotopes: | | | | | (a) 3
(c) 7 | (b) 5 ✓
(d) 2 | e fam, | | | | 7- pH of human | | | | | | (a) 7.35 ✓
(c) 5.35 | (b) 6.35
(d) 4.35 | | | | | 8- | Bond angles $\alpha = \gamma = 90^{\circ}$; $\beta \neq 90^{\circ}$ and axes $a \neq b \neq c$ is | | | | | |--|--|--|--|--|--| | | for crystal system: | | | | | | | (a) Tetragonal (| b) Hexagonal | | | | | | (c) Monoclinic / | d) Triclinic | | | | | 9- | If the rate equation of a re | action 2A + B → Products | | | | | | is, rate = K [A] ² [B] and A is present in large excess, | | | | | | | then order is: | | | | | | | (a) 1 ✓ | (b)· 2 | | | | | 105 | (c) 3 | (d) Zero | | | | | 10- | 1 gram formula of NaCl is equal to: | | | | | | | (a) 58.5 g ✓ | (b) 23 g | | | | | | | (d) 12 g | | | | | 11- | The pH of 10 ⁻³ mol dm ⁻³ of an aqueous solution of | | | | | | | H ₂ SO ₄ is: | | | | | | | | (b) 2.7 ✓ | | | | | | | (d) 1.5 | | | | | 12- Solvent extraction is an equilibrium process and it is | | | | | | | | controlled by: | | | | | | | (a) Law of mass action | | | | | | , | (b) The amount of solvent used(c) Distribution law ✓ (d) The amount of solute | | | | | | | | 21 1900 | | | | | 13- | 그렇게 보면서 그렇게 가득하다면 그렇게 되었다. 그는 그는 그런 그 사람들이 되었다면 그렇게 되었다. 그 없는 그는 그를 보고 있다면 그렇게 되었다면 | | | | | | i. | (a) $\lambda = \frac{h}{mv}$ | (b) $m = \frac{n}{\lambda}$
(d) $\lambda = \frac{2h}{mv}$ | | | | | | (c) $m = \frac{h}{v}$ | (d) $a = \frac{2h}{h}$ | | | | | | | | | | | | 14- | Stronger the oxidizing ag | | | | | | | (a) Oxidation potential | | | | | | | (c) Redox potential | • | | | | | 15- | | | | | | | · . | (a) 738 kJ mol⁻ ✓ | | | | | | | (c) 448 kJ mol ⁻ | (a) 138 kJ mol | | | | | | | | | | | - 16- The velocity of photon is: - (a) Independent of wavelength ✓ - (b) Depends on wavelength - (c) Equal to square of its amplitude - (d) Depends on its source - 17- Pressure remaining constant, at which temperature the volume of the gas will become twice of what it is at 0°C: - (a) 546°C (b) 200°C (c) 546 K ✓ (d) 273 K